为什么要做脊柱手术?脊柱,俗称大梁骨、脊梁骨,是人体支撑的中轴性骨骼,具有支撑身体、带来运动、保护神经、保持身体平衡、缓冲震荡的作用,四肢的各种活动,均通过脊柱调节。脊柱与肋骨、胸骨和髋骨分别组成胸廓和骨盆,对保护胸腔和盆腔脏器起到重要作用,因此脊柱疾病会带来颈、肩、背、腰疼痛,四肢疼痛、麻木、无力、活动障碍,腰椎、颈椎、胸椎活动受限,身体移动受限,可引起血压、心率改变,影响消化功能,影响大小便,颈椎、胸椎的病变可导致瘫痪,脊柱疾病可影响人的寿命。脊柱的重要性不言而喻,可以说,没有大梁骨的健康,就没有身体整体的健康,就不能保证生活质量。在保守治疗无效的情况下,脊柱手术几乎可以修复绝大多数脊柱病变,恢复、重建脊柱大部分功能,消除疼痛、麻木,提高生活质量,延长寿命。脊柱手术后疼痛、麻木、瘫痪会100%恢复吗?走行在脊柱内的神经分中枢神经和周围神经,颈椎、胸椎内走行的有中枢神经和周围神经,腰椎内走行的主要是周围神经,四肢的神经是周围神经,是从颈椎、腰椎走行过来的,中枢神经管理的范围大、神经细胞集中,损坏后没有再生功能,周围神经有自己的相对固定的支配范围,脊椎神经损伤可出现四肢麻木、疼痛、无力、大小便失禁、瘫痪。脊柱手术的主要目的就是解除疼痛、麻木、无力、瘫痪的原因,给脊髓、神经功能恢复提供机会,脊柱手术并不能修复神经,神经损伤后的坏死程度,目前技术无法预测,压迫时间长、压迫重的神经可能终生无法恢复,或只有部分恢复,对病程短,压迫轻的病例,手术效果好,术后疼痛、麻木、瘫痪有可能完全恢复,需要1年甚至更长时间观察结果,因此,在保守治疗无效后,早期手术,效果更好、更可靠。脊柱手术并发症率高吗?对于绝大多数脊柱手术来说,并发症发生率都是小概率事件,即低于5%,如感染率1-3%,瘫痪几率小于1%,远远低于8.333%过马路被车撞到的几率,因此绝大多数脊柱手术是安全的,即使是中彩票了,大多数的并发症是可通过简单方法解决的,不会留下后遗症,长远讲,不会影响手术结果。当然,对于成人脊柱畸形,需要7-8个小时,甚至10几个小时的大手术而言,并发症发生几率可达20%,甚至70-80%,还是那句话,大部分并发症是可防、可治的。收益率要大于付出。脊柱手术会瘫痪吗?任何手术都有发生并发症的可能性,脊柱手术也不例外,瘫痪是脊柱手术可能发生的并发症之一,其发生几率小于1%,而且,出现瘫痪的情况,一般是病情较重,神经压迫重、压迫时间长,即使不手术,迟早也会瘫痪,手术有可能挽救瘫痪,不手术,恢复的机会就没有了。脊柱手术,绝大多数是腰椎手术,腰椎手术,几乎不会出现瘫痪的情况,因为腰椎走行的是周围神经,周围神经,抗折腾,拉拉扯扯不会有问题,而且每根周围神经,就支配一小块地方,即使1%的可能性损伤了,也不会出大问题。脊柱手术做了还不如不做?现代医学是循证医学时代,做脊柱手术是要讲证据的,脊柱手术不是想做就做,想怎么做就怎么做,为做手术而做手术,要根据以前所有的可靠证据(大量研究、数据分析,数代人不懈追求),在提前预判手术结果(4P医学模式),安全前提下,做出的慎之又慎的科学决策,可知其手术后效果90%以上是比不做好的。因此,只要是有手术治疗的指证(这是前体),手术效果是可靠地,病人是会收益的。当然,手术不可能解决所有问题,集无数人心血的、代表最先进技术的航天飞机还会空中爆炸,可知,手术也不是100%可靠,因为人体要比航天飞机复杂的多,现在科学还不能解释人体所有问题,有些问题是不可预知的、不可与防的,有一小部分人手术效果确实不好,但一般不会变坏,只是没有达到预期目的,不能因噎废食。微创脊柱手术一定比大手术好?微创手术就是切口小?微创手术,是一种理念,就是通过最小的创伤,争取最好的结果,并没有具体的定义,比如刀口多长是微创,出多少血是微创,病人术后疼痛多大程度是微创,切多少骨头是微创,剥离多少肌肉是微创,手术多长时间是微创,微创是贯彻到手术的每一个环节的,每一位医生都会想法设法减少对病人的创伤,这是脊柱外科医师基本的素养。脊柱微创是相比较而言的,比如30年前,腰椎间盘手术开展不多,工具不全,刀口10多厘米长,骨头切除很多,手术时间3-4小时,剥离肌肉多,术后卧床1-3月,现在腰椎间盘手术,2-3厘米的手术切口,不切骨头或切除很少的骨头,不剥离肌肉,1-2小时就完成了,术后不需要卧床,相比以前,现代的腰椎盘手术就是微创手术。因此,个体化、适合的不同病情手术方式是最好的方式。为追求所谓的微创,徒然增加手术风险,延长手术时间,达不到治疗目的,是不可取的。同样是腰椎间盘手术,我怎么就好的慢?我怎么就没好?我怎么疼的这么重?不只是腰椎间盘手术,就是其它脊柱疾病的手术,如颈椎病等,都是非常多的变量在其中的,比如,病人吸烟不吸烟,体重指数高低,生活、工作习惯,椎间盘突出大小,椎间盘突出位置,神经压迫长短、轻重,有无糖尿病,疼痛耐受程度,有没有合并椎管狭窄等都会影响手术结果,同样的病,同样的手术,结果会不一样。同样的脊柱疾病,我怎么就用钢钉固定,别人就不用?大树干上,有个虫洞,啄木鸟把木头啄个洞,把虫子叼出来,病好了,虫子太多,把大树干要啃断了,把虫子叼出来,一阵风,大树拦腰折断,病好了没有?脊柱疾病类似,手术不仅要考虑当前,还要考虑长远,不仅要解决疼痛、麻木等症状,还要恢复大梁骨的支撑作用,神经保护作用,运动功能,钢钉的目的就是为了临时把大梁骨保护住,使大梁骨发挥长期作用。我的脊柱手术的成功率是多少?脊柱手术,是在非常严谨的证据下,基于有好的预判结果下,由非常专业、有经验的脊柱外科医师集体作出的决策,具体实施者,也是经验丰富、技术熟练的脊柱外科专业,因此脊柱外科手术成功率,排除手术中可能的意外情况,几乎是100%的,当然,具体情况还要具体分析,例如,病人手术前因脊髓损伤已经完全瘫痪了,病人要求手术后就要恢复,这是不现实的,这是全世界的难题,到现在为止,没有办法解决。
脊索瘤是起源于胚胎脊索残迹中低度恶性肿瘤,发病率低,占恶性原发性骨肿瘤的1-4%,常发部位为大梁骨的头、尾端,即颅底和骶骨位置,有侵袭性生长和易于复发的特点。骶骨脊髓瘤多见于50-70岁男性,男女比例约为3:1,5年和10年生存率分别为50%-87.8%、28%-70%,男性、低龄、瘤体较小且位于骶骨远端及早期接受治疗者预后较好。骶尾部疼痛(尾巴根处)是常见疾病,原因多由于急性外伤、急性外伤后遗症、慢性损伤等,常表现为阵发性,无明显夜间痛,不影响睡眠。骶骨脊索瘤主要的临床表现也是骶尾部疼痛,但呈持续性钝痛,夜间疼痛明显,晚期可出现大小便失禁、下肢疼痛、麻木、无力等。因此,成年人,出现骶尾部不明原因的持续性疼痛时,应警惕,及时到脊柱外科就诊,排除脊索瘤。虽然骶骨脊索瘤发病率低,但由于早期没有典型症状,待疾病确诊时,肿瘤多已经体积巨大,向前方可压迫盆腔脏器和大血管,向后方可突入椎管压迫马尾神经,难以进行完整切除,因此大多数病人预后较差,严重影响病人的生存期和生活质量。且脊索瘤周围解剖结构复杂,毗邻的大血管多,肿瘤的供养血管丰富,因此手术风险大,术中常出现瞬间大量出血,导致患者休克甚至死亡,因此骶骨脊索瘤切除手术又被称为抢救性手术。在倡导脊柱微创时代,各种脊柱手术的出血量基本都控制在1000毫升以内,在术前髂内动脉、供瘤动脉栓塞前提下,骶骨脊索瘤切除手术平均出血量仍然在3000毫升左右,出血高达上万毫升的也不少见,眼见病人手术创面出血,各种措施无效, 病人眼睁睁就因失血失去生命,可见骶骨脊索瘤手术之凶险,没有十足的把握,充分的术前、术中准备,这类手术难以开展。况且,这个部位的神经直接控制着大小便,肿瘤切除了,神经损伤了,大小便长期失去控制了,生活质量受到严重影响,手术是成功了?失败了?只有肿瘤切除了、大小便控制功能保留了,才能说手术成功了!最近,脊柱外科张庆国、刘淑恒治疗组在麻醉科、手术室、输血科的配合下,成功的切除了年内第2例高位(骶2以上)骶骨脊索瘤(患者同时有腰椎滑脱症),同时,在我院初次开创性使用了髂骨螺钉进行了腰椎-髂骨的稳定性重建,术中失血控制在2000毫升(腰椎手术和骶骨肿瘤2个手术),成功切除肿瘤同时,保留了控制大小便的神经,术后在科室护士的精心护理下,患者没有出现任何术后并发症,术后7天出院,刀口甲级愈合,大小便正常,行走正常,骶尾部疼痛消失。
癌痛的有创治疗癌痛的有创治疗癌性疼痛,或称晚期癌痛是造成癌晚期患者主要痛苦的原因之一。在此阶段,患者身心处于相当的痛苦之中,相当多的患者不是直接死于癌症,而是死于严重疼痛。大约80%晚期癌症患者有剧烈疼痛,估计每天世界上至少有1500万人经受着疼痛的煎熬。癌性疼痛已被认为是一种疼痛性疾病。多数癌痛患者经三阶梯治疗原则(口服镇痛药物为主),疼痛缓解率提高;但是,部分癌痛患者,在严格应用"三阶梯药物治疗方案"后,仍有剧烈疼痛,或因不能进食,有药物禁忌,或者不能耐受镇痛药副作用,服药经济负担过大等原因,无法充分接受"三阶梯方案"的治疗,称为顽固性癌痛或难治性癌痛,均是有创治疗的适应症。1. 周围神经阻滞及微创介入射频治疗癌症疼痛较局限,应用阿片类药物治疗效果不佳时,使用不同浓度局麻药物阻滞周围神经,或用射频毁损神经,常可获得满意的疗效。主要用于疼痛部位较局限的肢端。如头面部,四肢,浅表的胸腹部等部位。常用的神经阻滞包括上颌神经、下颌神经、耳颞神经、枕大神经、肩胛上神经、胸神经、肋间神经、股神经、闭孔神经、坐骨神经和腓神经等。2. 硬膜外腔神经毁损性阻滞硬膜外腔阻滞系将神经毁损药注入硬膜外腔,阻滞脊神经传导,产生节段性镇痛的方法。与周围神经阻滞相比,硬膜外腔阻滞可同时阻断躯体和自主神经,阻滞范围较大,且效果确切,因神经毁损药不直接接触脊髓及马尾神经,系在硬膜之外发挥作用,故膀胱与直肠括约肌受累的可能性较蛛网膜下腔阻滞少。此外,还可经硬膜外导管分次注入神经毁损药。3. 腹腔神经丛化学药物毁损腹腔神经丛乙醇阻滞治疗腹部肿瘤引起的疼痛,特别是胰腺癌痛,约60-85%的患者可获得无痛。腹腔神经丛药物毁损能很好地缓解腹腔内原发性及继发性肿瘤引起的上腹痛和背部牵涉痛。最常用于胰腺癌,与传统的观点相反,胰腺癌最常见的症状是疼痛而不是无痛的黄疸。对远端食管、胃、肝、胆管、小肠、近端结肠、肾上腺和肾的肿瘤性疼痛也有效。腹腔内恶性肿瘤引起的疼痛,用其他方法治疗效果不佳,应考虑采用腹腔神经丛阻滞。已有报告指出,腹腔神经丛阻滞对结肠和直肠癌疼痛也有效。4. 脊髓电刺激技术脊髓电刺激技术是近二十年来发展起来的新技术,用麻刺感去替代病变部位的疼痛感,具有不破坏神经,治疗过程完全可逆,不影响肢体的运动功能等突出优点。堪称癌痛的有创治疗中的绿色疗法。在美国,每年有近二十万例患者接受这样的治疗,并获得满意的止痛效果。对于肢体及躯干局限疼痛都可以考虑采用该技术治疗;尤其对于阿片类药物控制不佳的癌性神经性疼痛,可获得满意的疗效。5. 中枢靶控镇痛输注系统该治疗方法的突出优点在于以口服剂量的三百分之一或静脉剂量的一百分之一达到相同的止痛效果,大大降低了口服或静脉给药的相关副作用。该系统经过局麻手术植入,导管一端置于蛛网膜下腔,另一端与微电脑控制可编程的吗啡泵相连。达到一次灌注吗啡,支持半年用药的目的。与脊髓电刺激不同,它能控制全身多处疼痛,并有根据病人不同时间段,不同疼痛程度个性化给药的优点,是当前治疗顽固性癌痛的最先进方法。总之,癌痛患者有的人每天要面对数十上百片镇痛药,但仍无法有效缓解疼痛或不能耐受副作用,忍受着身体的和精神的双重痛苦,他们常因治疗方法的不合适而困扰,希望奇迹的发生。上述治疗方法为控制部分顽固性癌痛提供了一条比较好的途径。
好莱坞影片中美国特种兵装备精良,用于看清、瞄准目标的装备有夜视仪、瞄准镜、望远镜、测距仪、激光定位系统、强光手电等,目的是在各种环境下看清楚、瞄准特定目标。美国脊柱外科医生的装备同样精良,除了手术机器人、导航系统、大型显微镜等,个人头戴放大镜、头戴光源也是脊柱外科手术必备装备,脊柱外科手术为什么要配备头戴放大镜、头戴光源?手术室的无影灯不是挺亮吗?又是无遮挡的。头戴放大镜?以前纤维手外科大夫不也是在放大镜下缝合血管、神经吗?有什么稀奇的?为什么要头戴光源?现代的脊柱外科和传统脊柱外科有了非常大的差别,无影灯是为传统手术准备的,手术切口大,无影灯可以充分照到手术目标,满足手术需要。现代脊柱外科手术,如果用罗斯曼西蒙尼脊柱外科微创手术标准,80-90%的脊柱外科手术都是微创手术,微创手术,意味着在达到同开放手术效果的同时,尽最大可能减小手术创伤,手术目标的显露过程是减小创伤的关键步骤,即切开皮肤、筋膜、分离肌肉、剥离肌肉肌腱附着点的过程,切口小、剥离肌肉少,就意味着手术过程在一个窄而深的通道内进行,再好的无影灯也难以通过窄而深的通道照到手术目标位置,主刀医生没法看清楚神经、椎间盘、血管等重要结构,那就没法手术。做过脊柱外科微创手术的大夫,都有这种抓狂的经历,怎么调整,无影灯也照不进窄而深的刀口内,怎么下手?头戴光源为脊柱微创手术而生,头戴光源的特点是光圈小、亮度大,戴在头上,和术者视野同步,可以通过窄而深的通道照到手术目标,在减小手术创伤的同时帮助手术者分辨清楚神经、椎间盘、血管结构,避免误伤。为什么要戴头戴放大镜?专业的头戴放大镜,是根据个人的瞳距、远近视距、近视程度、手术习惯、专业手术特点,专门定制的,首先由眼科专业验光师利用丰富经验和精密仪器,根据术者具体情况、出具各项数据,这个过程非常重要,任何一个数据的偏差,都会影响放大镜效果,然后由专业技师根据眼科医师出具的数据,制作放大镜。因此现在脊柱外科医师佩戴的头戴放大镜和以前显微外科的通用显微镜有了非常大的区别,现在的脊柱外科头戴放大镜,技术含量不低,价格不菲,国内很少制作,大多是进口品牌,美国的一线品牌,在国内定制一副,一般需要10万人民币左右。头戴放大镜对微创脊柱手术有什么优势?与大型显微镜相比,头戴放大镜使用方便、灵活,性价比高。微创脊柱外科的微创,不仅是刀口小,微创体现在手术的每一个步骤,每一个步骤都微创了,最终的结果才是微创,在放大镜下神经、血管更加清晰,结合头灯的充分照明,可以更加微创的处理出血、神经分离等手术环节,可以更清晰的分辨细微结构,避免不必要的损伤,神经减压效果更可靠,椎间盘残留的可能性降低,这样才能使脊柱微创手术达到和开放手术一样效果,甚至更好的效果。 因此,在二次赴美学习时,我专门到洛杉矶的一家手术用头戴放大镜、头灯制作公司,定制了一副头戴脊柱外科专用放大镜,这个过程也是很曲折,每次驾车1-2小时,去了4次,出过一次错误(做好了看不清),再次验光,再次制作,历时2月多,在回国前才终于拿到一副合格的放大镜。经过近1年的适应,现在,我的颈椎、胸椎、腰椎微创手术都是在头戴放大镜和头灯的帮助下完成,用不到手术室无影灯,视野清晰,创伤更小,出血更少,术后感受更好,康复更快。
脊柱手术并发症是指在脊柱手术中、手术后发生与手术相关的神经根、脊髓、血管、肌肉、椎间盘、韧带损伤,以及感染、功能障碍、内固定失败、假关节等。脊柱手术并发症的发生主要有以下三种原因:1、患者方面的因素:如解剖异常,个体差异,病情轻重等;2、医生方面的因素:手术者技术生疏,操作粗糙,诊断失误等;3、护理方面的因素:如护理操作失误,护理管理混乱等。济南市中心医院骨外科张庆国脊柱手术并发症的特征及常见并发症:并发症的发生是可以预料的,其中有些只要尽到谨慎注意义务,其损害后果是可以防范或减轻的,这种并发症,如神经根、脊髓、血管损伤、血肿、部分感染、脑脊液漏等并发症,属于可以避免的并发症。而有些并发症,限于客观情况或医疗技术水平的限制,则无法防范,如内固定失败、假关节、脊髓再灌注损伤、蛛网膜炎、神经黏连、部分感染、邻椎病等,这种并发症,属于不可避免的并发症。脊柱外科并发症发生率是多少呢?脊柱手术种类繁多,按部位来分有颈椎手术、胸椎手术、腰椎手术、骶椎手术,按入路来分有前路手术、后路手术、前后路联合手术、侧方入路手术等,按方法来分有减压手术、融合手术、固定手术、切除手术、重建手术、矫形手术等,不同部位、不同方法、不同入路、不同具体情况(如肥胖、糖尿病、吸烟等)并发症发生率不一,总体来讲,脊柱手术各类并发症的发生率都属于小概率事件,所谓小概率事件,就是说发生几率非常低(一般以低于5%为标准),可以不加以特别关注的问题,如据统计,大家出门发生车祸的几率是8.33%,就是说脊柱手术发生并发症的发生几率远远小于出门发生车祸的几率,大家因此会不出门吗?不会的,只要小心,就不会被车撞到,100%没问题,脊柱手术并发症发生率是一样的,并不是说脊柱手术的感染率是1%,我的手术的感染几率就是1%,这是大数据分析的结果,是对群体来讲,对个体来说,如身体条件好,手术预防措施做得好,术后感染的几率就是0%。
An international consensus on the appropriate evaluation and treatment for adults with spinal deformitySigurd H. Berven1 Steven J. Kamper2 Niccole M. Germscheid3 Benny Dahl4 Christopher I. Shaffrey5 Lawrence G. Lenke6 Stephen J. Lewis7 Kenneth M. Cheung8 Ahmet Alanay9 Manabu Ito10 David W. Polly11 Yong Qiu12 Marinus de Kleuver13 AOSpine Knowledge Forum DeformityReceived: 28 March 2017 / Revised: 15 July 2017 / Accepted: 23 July 2017Springer-Verlag GmbH Germany 2017AbstractPurpose Evaluation and surgical management for adult spinal deformity (ASD) patients varies between health care providers. The purpose of this study is to identify appro-priateness of specific approaches and management strate-gies for the treatment of ASD.Methods From January to July 2015, the AOSpine Knowledge Deformity Forum performed a modified Delphi survey where 53 experienced deformity surgeons from 24 countries, rated the appropriateness of management strategies for multiple ASD clinical scenarios. Four roundswere performed: three surveys and a face-to-face meeting. Consensus was achieved with C70% agreement.Results Appropriate surgical goals are improvement of function, pain, and neural symptoms. Appropriate preop-erative patient evaluation includes recording information on history and comorbidities, and radiographic workup, including long standing films and MRI for all patients. Preoperative pulmonary and cardiac testing and DEXA scan is appropriate for at-risk patients. Intraoperatively, appropriate surgical strategies include long fusions with deformity correction for patients with large deformity and sagittal imbalance, and pelvic fixation for multilevel fusions with large curves, sagittal imbalance, and osteo-porosis. Decompression alone is inappropriate in patients with large curves, sagittal imbalance, and progressivedeformity. It is inappropriate to fuse to L5 in patients with symptomatic disk degeneration at L5–S1.Conclusions These results provide guidance for informed decision-making in the evaluation and management of ASD. Appropriate care for ASD, a very diverse spectrum of disease, must be responsive to patient preference and values, and considerations of the care provider, and the healthcare system. A monolithic approach to care should be avoided.Keywords Adult spinal deformity Surgery Appropriateness Consensus DelphiElectronic supplementary material The online version of this article (doi:10.1007/s00586-017-5241-1) contains supplementary material, which is available to authorized users.&Sigurd H. Berven bervens@orthosurg.ucsf.edu1Department of Orthopaedic Surgery, University of California San Francisco, 500 Parnassus Ave, MU320W, San Francisco, CA 94143-0728, USA2Musculoskeletal Division, The George Institute for Global Health, Sydney, Australia3Research Department, AOSpine International, Davos, Switzerland4Spine Unit, Department of Orthopedic Surgery, Rigshospitalet and University of Copenhagen, Copenhagen, Denmark5Department of Neurosurgery and Orthopaedic Surgery, University of Virginia, Charlottesville, VA, USA6Department of Orthopedic Surgery, Columbia University College of Physicians and Surgeons, New York, NY, USA7Department of Surgery, Toronto Western Hospital, Toronto, ON, Canada8Department of Orthopaedics and Traumatology, The University of Hong Kong, Pokfulam Road, Hong Kong, China9Faculty of Medicine, Acibadem University, Istanbul, Turkey10Department of Orthopedic Surgery, National Hospital Organization Hokkaido Medical Center, Sapporo, Japan11Department of Orthopaedic Surgery, University of Minnesota, Minneapolis, MN, USA12Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China13Department of Orthopedics, Radboud University Medical Center, Nijmegen, The NetherlandsIntroductionSpinal deformity in adults is common and has a significant and measurable impact on health-related quality of life (HRQOL) [1]. The burden of adult spinal deformity (ASD) on society and the healthcare system is large and increasing [2]. However, the management of ASD is characterized by significant variability without consensus [3–5]. Indications for surgery, preoperative preparations, intraoperative strategies, and postoperative care vary within the commu-nity of physicians who care for patients with ASD [6–8]. The clinical presentations of ASD patients vary, and may include symptoms of pain, functional limitations, neural compromise, and cosmetic problems. Consequently, the patient cohort is heterogeneous and classifications of ASD have included considerations of curve patterns, sagittal plane alignment, and clinical impact of deformity on health status [9–12]. A high level evidence-based approach to the appropriate evaluation and management of ASD patients is not available and may improve management. Achieving consensus on appropriate evaluation and management should encompass the broad range of approaches and strategies available, and be responsive to relevant consid-erations, including patient values and preference, physician preferences and skills, and cost and value considerations [13, 14]. The appropriate treatment strategy is the approach that leads to the largest improvement in HRQOL with the least risk and cost. Expert panels can help identify appro-priateness criteria as decision-making tools to provide actionable guidance for specific clinical scenarios and pathologies [15, 16]. Recommendations that define rea-sonable and appropriate care, developed by a panel of experienced surgeons from geographically diverse regions with distinct training and specialties, would empower patients and physicians to make informed decisions regarding appropriate care without mandating a monolithic approach. The purpose of this study is to define appropri-ateness of specific approaches and management strategies for the treatment of ASD patients.Materials and methodsDesignA modified Delphi survey was performed, similarly to the approach applied by de Kleuver et al. for adolescent idio-pathic scoliosis [17]. The scoring system is based upon the RAND/UCLA appropriateness method [15]. The study included three web-based surveys (January to June 2015) and one face-to-face meeting (July 2015).PanelistsInvitation to participate was sent by email to all AO Spine Members (n = 5482). A total of 155 members applied, 53 were selected, and 46 agreed to participate. Eligibility was based on number of years in practice (minimum of6years), clinical practice focus (minimum of 35% focus on adult spine), and estimated number of ASD cases examined (minimum of 50 patients) and operated (minimum of 20 patients) per year. Seven members of the AOSpine Deformity Knowledge Forum Steering Committee who also met the above criteria contributed as panelists. The panel consisted of 53 spine deformity surgeons from 24 countries from different geographic locations. All panelists were male, mean age was 50 years, and over 90% had been practicing spine surgery for 10 or more years (Table 1). The research team MdK, SB, SK, NG, BD and CS did not participate as panelists.Delphi roundsThe study consisted of four rounds: three rounds were web-based surveys and the final round was a face-to-face meeting. Survey questions were divided into four sections: goals of care, preoperative considerations, intraoperative considerations, and postoperative considerations. In each round, panelists answered specific questions and could then provide additional comments and opinions, either through an open text field, which appeared below every survey question or through discussions during the final meeting. After each round, every panelist received a de-identified summary of all responses, along with their individual ratings.In the first round, panelists reviewed two peer-reviewed manuscripts that defined ASD and were asked to answer a series of questions which required them to rate the appro-priateness of various clinical considerations and scenarios for the ASD patient [9, 18].In the second round, to increase granularity, four patient cases were presented, representing the spectrum of ASD,Table 1 Demographic profile of panelistsCharacteristicRound1(n = 53)2(n = 51)3(n = 49)4(n = 20)Age (years)30–39555140–49161413450–593131301460–691111RegionAsia Pacific18 (34)18 (35)18 (37)7(35)Europe11 (21)11 (22)10 (20)6(30)Africa1(2)1(2)1(2)0(0)Middle East5(9)5(10)5(10)2(10)Latin America5(9)4(8)3(6)1(5)North America13 (25)12 (24)12 (24)4(20)Years in practice\104(8)3(6)3(6)1(5)10–1924 (45)23 (45)22 (45)9(45)20–2918 (34)18 (35)17 (35)7(35)30–396(11)6(12)6(12)2(10)40–491(2)1(2)1(2)1(5)Values are presented as N (%)from mild to severe. For each case, six hypothetical clinical scenarios were created by combining patient characteristics (e.g., age, osteoporosis, comorbidities) that influence risks and benefits of surgery.In the third round, questions from the previous rounds which required additional clarification were re-worded. The operative techniques actually performed for the four clinical cases from the second round were also presented and panelists were asked to rate the appropriateness of the selected treatment strategies.In the final round, 20 panelists met face-to-face, which provided an interactive platform to exchange and express opinions. The research team moderated the discussion. For areas which were ambiguous and required further clarifi-cation, questions were developed in real-time. Using an electronic audience response system, anonymous voting was performed.Rating process and analysisThe goals of care were ranked according to their relative importance; results are presented as mean rank. With respect to the pre-, intra- and postoperative considerations, panelists rated appropriateness of procedures and man-agement strategies according to the RAND/UCLA appro-priateness method using the definitions described by Fitch et al. [15]. Procedures and strategies were rated on a nine-point rating scale, collapsed into three categories: ‘inap-propriate’ where the expected negative consequencesexceed the expected health benefit such that the procedure should not be performed (scores of 1–3); ‘reasonable’ where the balance of risk and benefit is unknown, but there is a reasonable chance of benefit with limited risk (4–6); and ‘appropriate’ where the expected health benefit exceeds the expected negative consequences by a wide margin such that the procedure is worth doing (7–9). For each question, the percentage of responses in each category was calculated. Consensus was defined as C70% of responses in either the appropriate or inappropriate cate-gory for a particular question. Thus, each proposed man-agement strategy was defined; appropriate (consensus achieved), inappropriate (consensus achieved), or no consensus.ResultsAll panelists completed the first round and 96% completed the second and third rounds.Goals of careThe highest ranked goals of care in treating ASD patients were functional improvement (mean rank of 2.1 from a total of 10 options), pain improvement (mean rank of 2.6), and neural improvement (mean rank of 3.5). Radiographic improvement, prevention of deformity progression, or avoidance of complications were the lowest ranked (meanrank C6.0) of the options presented. All data are presented in Supplementary Table 1.Preoperative managementAssessment of risk factors for surgery and poor prognosisTable 2 summarizes the consensus regarding preoperative assessment. The panel rated as appropriate specific ele-ments of patient history, physical exam, and circumstances for use of preoperative testing including bone health and cardiopulmonary status.Preoperative imagingTable 3 summarizes the consensus regarding preoperative imaging, including use of MRI, CT, and myelography.Intraoperative managementSurgical strategiesTable 4 summarizes the areas of consensus regarding specific surgical strategies for ASD.Decompression and length of fusion Decompression alone was inappropriate if there was any spinal sagittal imbalance, or proven radiological curve progression, in larger curves. Decompression with limited fusion was inappropriate if the curve was 60L, and with sagittal imbalance. There was no consensus regarding the appro-priateness of decompression with limited fusion. Perform-ing a decompression with long fusion in patients with large coronal deformity ([60L), or sagittal imbalance was appropriate, as long as there were no comorbidities (coronary artery disease, osteoporosis). In the presence of comorbidities, there was no consensus.Lowest instrumented vertebraL5–S1 fusion When performing a long lumbar fusion from the lower thoracic spine distally to the lumbar spine, it was appropriate not to fuse L5–S1 in conditions of well-maintained sagittal global alignment, non-osteoporotic vertebra, and no disk degeneration at L5–S1. Conversely, if disk degeneration or symptomatic pathology presented at L5–S1, then it was inappropriate to stop at L5, regardless of sagittal balance and bone quality.L5–S1 interbody support If a long lumbar fusion from T12 or higher is extended to the sacrum, then it was appropriate to perform interbody support (through anterior or posterior approach) at L5–S1.Pelvic fixation When performing a long lumbar fusion from the lower thoracic spine to the sacrum (e.g., T10–S1), it was appropriate to perform pelvic fixation if the patient is osteoporotic, or if the patient has a severe deformity (coronal trunk shift [4 cm, sagittal vertical axis offset [5 cm). There was no consensus regarding the appropri-ateness of pelvic fixation in the presence of isolated sagittal imbalance and good bone quality. When performing a shorter lumbar fusion from the upper lumbar spine to the sacrum (e.g., L2–S1), it was appropriate to perform a pelvic fixation if the patient is osteoporotic and with sagittal imbalance.Upper instrumented vertebra Ending a lumbar fusion in the lower thoracic spine (e.g., T9–12) was appropriate in cases with small thoracic kyphosis (\30L), adequate sagittal balance, and non-osteoporotic bone. If the thoracic kyphosis is larger ([50L), even with sagittal balance, and non-osteoporotic bone, then there was no consensus on where to end the fusion proximally.Novel techniquesTable 5 summarizes areas of consensus regarding novel techniques including cement augmentation, percutaneous instrumentation, and osteotomies.Cement augmentation Cement augmentation at the upper instrumented vertebra (UIV) or UIV ? 1 is inappropriate in non-osteoporotic patients. There was no consensus for when cement augmentation was appropriate.Percutaneous instrumentationPercutaneous fixation wasinappropriate in patients with severe coronal deformity([60L) and severe sagittal imbalance ([100 mm). There was no consensus for when percutaneous fixation was appropriate.Osteotomies It was inappropriate to perform a Ponte osteotomy in patients with a rigid lumbar hypolordosis with an ankylosed anterior column. It was appropriate to perform a pedicle subtraction osteotomy (PSO) in patients with a rigid lumbar hypolordosis, sagittal imbalance, age 40–65 years, with no comorbidities, and with or without coronal imbalance.Implant materials, grafts, and neuromonitoringLocal autogenous bone graft was appropriate. It was appropriate to use intraoperative neuromonitoring in cor-rection surgery with levels of fusion above the conus. There was no consensus on which implant and rod mate-rials were appropriate in diverse scenarios.Table 2 Consensus findings for preoperative assessment of risk factors for surgery and poor prognosis for ASD patientsAreaItemLevel ofconsensusPatient historyMedication historyAppropriateCollecting and evaluatingSurgical history (i.e., previous spine operation)Duration of symptomsLevel of painSocial support for patients [65 years of ageFamily history of degenerative adult deformityPrior hospitalizationPatient smoking historyPatient’s smoking history through patient reportingCollecting and evaluatingPatient’s smoking cessation in patients who smoke[1 pack per day (for electivesurgery)NoconsensusAppropriatePatient’s smoking cessation—never inquireInappropriatePatient’s smoking history through urine/blood testingNoconsensusCardiovascular conditionPerforming a cardiac stress test (chemical or exercised-based) in patients withSignificant co-morbidity (i.e., remote myocardial infarction, blood pressure, andAppropriatecholesterol medications)History of congestive heart failureNo pulmonary complaints (no shortness of breath, good tolerance to walking 3 Noflights of stairs), healthy, 40–65 years oldconsensusPulmonary conditionPerforming a pulmonary function test with spirometry in patients withHistory of pulmonary co-morbidity (i.e., chronic obstructive pulmonary disease,Appropriateasthma), C40 years oldNo pulmonary complaints (no shortness of breath, good tolerance to walking 3 Noflights of stairs), healthy, 40–65 years oldconsensusBody mass index (BMI)EvaluatingBone qualityEvaluatingPatient physical examEvaluatingBMI to stratify risk or to guide treatmentNoconsensusBone mineral density with DEXA in patients with history of insufficiencyAppropriatefracture (low energy fracture of extremity and spine)Bone quality/presence of osteoporosis in patients with known risk factors forosteoporosisBone quality/presence of osteoporosis- Never inquireInappropriateBone mineral density with DEXA in a [65 years old female patient with noNoknown history of osteoporosis (no history of fragility fractures)consensusGross motor function and knee and ankle reflexes by performing a neurologicalAppropriateexamGait (ability to walk)Pelvic tilt (physical assessment of pelvic version)Hip flexion contractureSkin (surgical site, legs for pigmentation and signs of venous stasis and arterialdisease)Peripheral pulsesPostoperative managementConsensus regarding deep venous thrombosis (DVT) prophylaxis and return to activity after surgery is pre-sented in Table 6. Use of postoperative mechanical pro-phylaxis (i.e., compression stockings, pneumatic compression devices) was appropriate for all patients, and chemical prophylaxis (i.e., low molecular weight heparin, unfractionated heparin) was appropriate for patients with high risk of DVT.Many postoperative strategies explored by the panel were considered reasonable as approaches, but did not meet the a priori consensus criteria.DiscussionGoals of careLiterature in ASD surgery supports the goals of care to include radiographic correction of deformity, prevention of123Eur Spine JTable 3 Consensus findings for preoperative imaging for ASD patientsImaging modalityItemLevel of consensusX-rayFull standing anterior–posterior and lateral filmsAppropriate3D full body standing image (e.g., EOS) (if available in your clinic/country)MRI of the lumbar spinePlanned lumbar fusion, with or without no neural symptomsAppropriateMRI of the thoracic spinePlanned lumbar or thoracic and lumbar fusion, with myelopathyAppropriatePlanned lumbar or thoracolumbar fusion, without neural symptomsNo consensusMRI of the cervical spinePlanned lumbar or thoracic and lumbar fusion, with myelopathyAppropriatePlanned lumbar or thoracolumbar fusion, without neural symptomsNo consensusCTPrevious laminectomyAppropriateNo history of previous surgeryNo consensusCT myelogram of the lumbar spineNo history of previous surgery, when preoperative MRI is availableInappropriateNo history of previous surgeryNo consensusprogression of the deformity, neural decompression, safety, and improvement of HRQOL in domains including pain, function, self-image, and mental health [3, 6, 19, 20]. The panel ranked improvement of function, pain, and neural status to be the most important, and there is good evidence that surgery results in reliable improvement in these domains [5, 21, 22]. Pekmezci et al. reported that baseline functional limitations in daily life were the most important concern for patients choosing surgery over non-operative care [23]. Acaroglu et al. demonstrated that surgery was more effective than non-operative care in improving health-related quality of life measured as quality adjusted life expectancy, and the effect size of surgery is most in patients with greatest preoperative disability [58]. The panel ranked radiographic improvement, prevention of deformity progression, and avoidance of complications as less important goals. Although the ultimate aim is to improve functional status, it has been shown that functional improvement is correlated with radiographic outcomes such as magnitude of radiographic correction in the sagittal and coronal planes and improvement of spinopelvic and global sagittal alignment [24, 25]. Therefore, it is difficult to separate clinical and radiographic goals, and both are considered appropriate in the surgical management of ASD.Preoperative considerationsPatient-related factors are important for risk assessment and surgical planning in ASD. Age, BMI, and cardiac and pulmonary comorbidities have been shown to be predictors of perioperative complications, readmissions, and mortality in patients undergoing surgery for ASD [26–28]. Hu and Berven identified a comprehensive list of these variables, including medical conditions, prior surgery, and socialsupport networks which should be recognized prior to elective surgery for ASD to optimize patients preopera-tively, thereby reducing the risk of surgical complications [29]. Besides comorbidities, smoking is a predictor of poor patient satisfaction and reduced postoperative fusion rates, and smoking cessation for more than 6 months prior to spinal fusion surgery has been shown to reverse these negative effects [26, 30]. Consistent with the literature, the panel reached consensus on the importance of assessing cardiac and pulmonary function, bone density, and comorbidities in all patients with these comorbidities, as well as identifying smoking habits.Preoperative imaging is important to assess the magni-tude of deformity in the coronal, sagittal, and axial planes, and for planning the surgical strategy. The panel reached consensus that it is appropriate for all ASD patients to be evaluated with preoperative full spine standing anterior– posterior and lateral radiographs. This is in agreement with evidence which consistently shows that full-length standing films is critical for accurate preoperative planning and classification, including visualization of C7 and the femoral heads [25, 31, 32].Intraoperative considerationsThe panel recognized the broad spectrum of surgical approaches for ASD patients, and consensus was reached in only a few scenarios. Consensus was more often reached on inappropriate, as opposed to appropriate, surgical approaches. Specifically, decompression alone is inappro-priate in curves of 30L with either a progressive deformity or sagittal imbalance. This is supported by the literature which shows that decompression alone is associated with high rates of progressive deformity and poor outcome in patients with segmental instability and deformity [33]. InTable 4 Consensus findings for surgical procedures for ASD patientsAreaItem or patient scenarioLevel ofconsensusDecompression aloneSymptomatic stenosis within a 30L lumbar scoliosisInappropriateProgressive curve, sagittally balancedStable curve, sagittal imbalanceSymptomatic stenosis on the CONVEX or CONCAVE apex of 30L lumbar scoliosisNoStable curve, sagittally balancedconsensusDecompression with limitedSymptomatic stenosis within a 60L lumbar scoliosisInappropriatefusionStable curve, sagittal imbalanceSymptomatic stenosis within a 60L lumbar scoliosis andNoStable curve, with trunk shift of 4 cm to the left, sagittally balancedconsensusStable curve, sagittally balancedSymptomatic stenosis within a 30L lumbar scoliosis andStable curve, sagittal imbalanceStable curve, sagittally balancedDecompression with long fusionSagittal imbalance, no comorbiditiesAppropriateCoronal deformity [60L, with trunk shift [4 cm to the left, no comorbiditiesSagittal imbalance, osteoporotic, coronary artery diseaseNoCoronal deformity [60L, with trunk shift [4 cm to the left, osteoporotic, coronary arteryconsensusdiseaseLumbosacral fusion (lowestWith intermediate posterior fusion (lower thoracic spine to L5), sagittally balanced, non-Appropriateinstrumented vertebra)osteoporotic, no disk degeneration at L5–S1Interbody support at L5–S1L5 in patients with long fusion ([7 segments) and symptomatic pathology at L5–S1InappropriateAnterior column support with ALIF or posterior interbody approach to the L5–S1 segmentAppropriatefor a long fusion from T12 to S1Lumbosacral fusion (lowestOsteoporotic andAppropriateinstrumented vertebra)Sagittal plane deformity ([5 cm)Pelvic fixation (T10–S1)Severe deformity (trunk shift [4 cm, sagittal deformity [5 cm)Sagittally balancedNon-osteoporotic and severe deformity (trunk shift [4 cm, sagittal deformity [5 cm)Non-osteoporotic andNoSagittal plane deformity ([5 cm)ConsensusSagittally balancedLumbosacral fusion (lowestOsteoporotic, sagittal imbalanceAppropriateinstrumented vertebra)Osteoporotic, sagittally balancedNoPelvic fixation (L2–S1)Non-osteoporotic, sagittally balancedconsensusNon-osteoporotic, sagittal imbalanceLumbosacral fusion (upperThoracic kyphosis (\30L), sagittally balanced, non-osteoporoticAppropriateinstrumented vertebra)Thoracic kyphosis ([50L), sagittally balanced, non-osteoporoticNoThoracolumbar junction (T9–L1)consensusALIF anterior lumbar interbody fusionline with previous literature, decompression with a limited fusion was considered inappropriate for patients with large coronal deformity ([60L), or sagittal imbalance [34].Regarding the length of fusion, the choice of upper and lower instrumented vertebra, and distal fixation techniques remains controversial.Distal fusion level and fixationFor long fusions from the thoracic spine to L5, high rates of subsequent advanced degeneration at L5–S1, high revision surgery rates, and worse outcomes have been reported [35]. Conversely, other research has concluded that patients123Eur Spine JTable 5 Consensus findings for novel intraoperative techniques for ASD patientsAreaItem or patient scenarioLevel ofconsensusCement augmentationUIV and UIV ? 1 in T10–S1, non-osteoporoticInappropriateUIV and UIV ? 1 in T10–S1, osteoporoticNo consensusPercutaneous fixationCoronal deformity ([60L), bends to 30L, severe sagittal imbalance (SVA [100 mm)InappropriateCoronal deformity ([60L), bends to 30L, moderate sagittal imbalance (SVA 50–100 mm)No consensusCoronal deformity ([60L), bends to 30L, sagittally balancedRigid coronal deformity [30LPonte osteotomyRigid lumbar hypolordosis, sagittal imbalance, immobile disks in the anterior column with rigidlyInappropriatefused anterior interbody/ankylosesMobile anterior column andNo consensusCoronal deformity ([60L), severe sagittal imbalance (SVA [100 mm)Coronal deformity ([60L), moderate sagittal imbalance (SVA 50–100 mm)Trunk shift 6 cm with level shoulders, sagittally balancedPedicle subtractionRigid lumbar hypolordosis, age 40–65 years, no comorbidities, andAppropriateosteotomySagittal imbalance4 cm trunk shift and level shouldersRigid lumbar hypolordosis, age [65 years, osteoporotic, coronary artery disease, andNo consensusSagittal imbalance4 cm trunk shift and level shouldersVertebral columnRigid thoracic deformity with 4 cm trunk shift to the left andNo consensusresectionLevel shoulders, age 40–65 years, no comorbiditiesLevel shoulders, age [65 years, osteoporotic, coronary artery diseaseRight shoulder elevated with a convex right thoracic deformity, age 40–65 years, no comorbiditiesRight shoulder elevated with a convex right thoracic deformity, age [65 years, osteoporotic,coronary artery diseaseUIV upper instrumented vertebra, SVA sagittal vertical axisfused to S1 have a higher risk of complications than patients fused to L5, and that the latter have an increased risk of developing sagittal imbalance [36, 37]. The panel recommended selection of L5 as a lowest instrumented vertebra as appropriate in patients with intermediate fusions (lower thoracic spine to L5) who have good sagittal balance and good bone stock and have no disk degenera-tion at L5–S1. In patients with longer fusions ([7 seg-ments) or symptomatic pathology at L5–S1, fusion to S1 is appropriate.The role of interbody support and pelvic fixation in patients fused to the sacrum is an important consideration. Interbody fusion and pelvic fixation reduce strain on pos-terior implants, and potentially improve fusion and main-tenance of deformity correction [38–41], but there is conflicting evidence regarding the requirement for this strategy [42–44]. The panel found the use of interbody support, through either an anterior or posterior approach at L5–S1, to be appropriate in all fusions extending from T12 or higher to the sacrum. In patients with osteoporosis or with severe deformity (coronal trunk shift [4 cm, sagittalvertical axis offset [5 cm), the panel also found supple-mental pelvic fixation to be appropriate in patients under-going fusion from L2 or above to the sacrum.Proximal fixationThe choice of an UIV in ASD is thought to impact prox-imal junctional pathology. The literature provides limited guidance for extension of fusion to the upper thoracic spine [45–48]. The only area of consensus was for a lumbar degenerative scoliosis fusion to the lower thoracic spine (rather than higher) is appropriate in patients who meet the strict criteria of adequate sagittal balance and no evidence of osteoporosis and with a thoracic kyphosis less than 30L.The role of osteotomiesThe use of three-column osteotomies has increased sig-nificantly over the past decade. While osteotomies of the spine provide a powerful technique for posterior-based deformity correction [49], osteotomies have been123Eur Spine JTable 6 Consensus findings for postoperative management strategies for ASD patientsAreaItem or patient scenarioLevel ofconsensusDVT prophylaxisLow risk of DVTNo consensusEarlymobilizationDVT prophylaxisLow risk of DVTAppropriateMechanicalDVT prophylaxisHigh risk of DVTAppropriateChemicalLow risk of DVTNo consensusDVT prophylaxisHigh risk of DVTNo consensusCoumadinLow risk of DVTReturn to activitySedentary work by 3-month postoperative after a short fusion (\5 segments)AppropriateCycling at 1-year postopManual labor at 1-month postoperativeInappropriateContact sports after a long fusion ([7 segments) when the patient is fully healed and there is good bonyfusionManual labor, hiking, dance, yoga, golf, tennis by 1-year postoperativeNo consensusSedentary work by 6 months after long fusionContact sports after a short fusion (\5 segments) when the patient is fully healed and there is good bonyfusionassociated with high rates of complications, including junctional pathology, nonunion, and perioperative compli-cations [50–52]. Specifically, LaMaida et al. demonstrated high rates of complications in elderly ASD patients treated with osteotomies [50], and Smith et al. identified three-column osteotomies as an independent risk factor for major complications [52]. The panel reached consensus that it is appropriate to perform a PSO on patients with sagittal imbalance due to a rigid lumbar hypolordosis if aged 40–65 years, with no comorbidities, with or without coronal imbalance. In contrast, the panel agreed that per-forming a Ponte osteotomy in a patient with a rigid deformity and ankylosed spine is inappropriate. Other clinical scenarios for when to perform the Ponte, PSO, or vertebral column resection osteotomies did not reach con-sensus, largely because of the variability in patients.The use of novel surgical techniques, including cement augmentation of screws and adjacent vertebra, and percu-taneous fixation for deformity did not reach consensus for any scenario. There is limited literature to guide an evi-dence-based approach to novel techniques in spinal deformity surgery.Postoperative considerationsDVT is a significant postoperative complication related to morbidity and mortality following ASD surgery [53, 54]. The panel achieved consensus that it is appropriate to usemechanical prophylaxis in all surgical ASD patients, and chemical prophylaxis in patients who are at a high risk for DVT. Patients undergoing surgical treatment for adolescent idiopathic scoliosis have been shown to return to full, unrestricted activity including sports by 1 year postopera-tive without adverse effects [55, 56]. In contrast, there is little evidence to guide time to return to work and recre-ational activities for adults, and there is substantial vari-ability in reported return-to-activity rates [57].Clinical relevance and limitationsThe strength of this study is that it addressed a broad spectrum of scenarios and decision points that physicians and patients encounter routinely in management of patients with ASD. Many decision points simply cannot be addressed practically with empirical studies or randomized trials, leading to limited evidence in the literature, and significant variability in approaches to care. By employing an international experienced panel, we provided guidance in defining appropriate and inappropriate approaches to care where possible. It turned out that it was very difficult to reach consensus. We believe that this is due not so much to lack of evidence, but due to the complexity of the dis-ease combined with almost endless permutations of con-founding comorbidities. Furthermore, patient preference, patient risk aversion, and patient perception of preoperative health status complicate decision-making even more.Despite providing panelists with multiple realistic scenar-ios, even this modified Delphi methodology could not take into account this degree of granularity.The study provides high levels of consensus regarding the appropriate preoperative evaluation of patients, limited con-sensus on negative recommendations (i.e., consensus on inappropriate care), and very few positive recommendations (i.e., consensus on appropriate care). The majority of surgical approaches, and intraoperative options, are considered as reasonable, without a clear consensus regarding appropriate or inappropriateness. Panel consensus regarding inappropriate care, especially for intraoperative strategies, can function as negative directives and ‘‘what not to do’’. Guidance on what to avoid may be useful as this may help avoid poor outcomes and surgical failures, thereby reducing health care costs, and improving value of care. Acaroglu et al. demonstrated that surgical treatment of adult deformity is associated with sig-nificant complications compared with non-operative care, and a decision analysis regarding the appropriateness of surgical care must include consideration of complications of surgery and the expected benefit of surgery on health-related quality of life [59]. The absence of consensus on appropriate approaches to many surgical scenarios, and the predominance of ‘‘rea-sonable’’ as a response, supports the conclusion that surgeon preference and patient values remain central to decision-making, and a monolithic or dogmatic approach to care (in-cluding practice guidelines) should be avoided.Appropriate care for ASD must be responsive to specific considerations of the patient, the care provider, and the healthcare system. The areas where there is no consensus regarding appropriate approaches may also guide future research to provide an evidence-based treatment.Acknowledgements We are grateful to the 53 panelists (Supple-mentary Table 2) for contributing to this study. This research was supported by AOSpine International through a grant to the AOSpine Deformity Knowledge Forum. AOSpine is a clinical division of the AOFoundation- an independent, medically guided not for profit organization.Compliance with ethical standardsFunding This study received financial support from AOSpine International through the AOSpine Deformity Knowledge Forum.Conflict of interest The authors do have funding related to the study, and conflicts that are not directly related to the study.References1.Pellise F, Vila-Casademunt A, Ferrer M, Domingo-Sabat M, Bago J, Perez-Grueso FJ, Alanay A, Mannion AF, Acaroglu E, European Spine Study Group E (2015) Impact on health related quality of life of adult spinal deformity (ASD) compared with other chronic conditions. Eur Spine J 24:3–11. doi:10.1007/ s00586-014-3542-12.Waldrop R, Cheng J, Devin C, McGirt M, Fehlings M, Berven S (2015) The burden of spinal disorders in the elderly. Neurosurgery 77(Suppl 4):S46–S50. doi:10.1227/NEU.00000000000009503.Cho KJ, Kim YT, Shin SH, Suk SI (2014) Surgical treatment of adult degenerative scoliosis. Asian Spine J 8:371–381. doi:10. 4184/asj.2014.8.3.3714.Wang G, Hu J, Liu X, Cao Y (2015) Surgical treatments for degenerative lumbar scoliosis: a meta analysis. Eur Spine J 24:1792–1799. doi:10.1007/s00586-015-3942-x5.Yadla S, Maltenfort MG, Ratliff JK, Harrop JS (2010) Adult scoliosis surgery outcomes: a systematic review. Neurosurg Focus 28:E3. doi:10.3171/2009.12.FOCUS092546.Tribus CB (2003) Degenerative lumbar scoliosis: evaluation and management. J Am Acad Orthop Surg 11:174–1837.Everett CR, Patel RK (2007) A systematic literature review of nonsurgical treatment in adult scoliosis. Spine (Phila Pa 1976) 32:S130–S134. doi:10.1097/BRS.0b013e318134ea888.Liang CZ, Li FC, Li H, Tao Y, Zhou X, Chen QX (2012) Surgery is an effective and reasonable treatment for degenerative scolio-sis: a systematic review. J Int Med Res 40:399–4059.Aebi M (2005) The adult scoliosis. Eur Spine J 14:925–948. doi:10.1007/s00586-005-1053-910.Berjano P, Lamartina C (2014) Classification of degenerative segment disease in adults with deformity of the lumbar or tho-racolumbar spine. Eur Spine J 23:1815–1824. doi:10.1007/ s00586-014-3219-911.Faldini C, Di Martino A, De Fine M, Miscione MT, Calamelli C, Mazzotti A, Perna F (2013) Current classification systems for adult degenerative scoliosis. Musculoskelet Surg 97:1–8. doi:10. 1007/s12306-013-0245-412.Schwab F, Ungar B, Blondel B, Buchowski J, Coe J, Deinlein D, DeWald C, Mehdian H, Shaffrey C, Tribus C, Lafage V (2012) Scoliosis Research Society-Schwab Adult Spinal Deformity Classification: a validation study. Spine (Phila Pa 1976) 37:1077–1082. doi:10.1097/BRS.0b013e31823e15e213.Garber AM, Tunis SR (2009) Does comparative-effectiveness research threaten personalized medicine? N Engl J Med 360:1925–1927. doi:10.1056/NEJMp090135514.Paulus MC, Kalantar SB, Radcliff K (2014) Cost and value of spinal deformity surgery. Spine (Phila Pa 1976) 39:388–393. doi:10.1097/BRS.000000000000015015.Fitch K, Bernstein SJ, Aguilar MD, Burnand B, LaCalle JR, Lazaro P, van het Loo M, McDonnell J, Vader J, Kahan JP (2001) The RAND/UCLA appropriateness method user’s manual. RAND Corporation, Santa Monica16.Shekelle P (2004) The appropriateness method. Med Decis Mak 24:228–231. doi:10.1177/0272989X0426421217.de Kleuver M, Lewis SJ, Germscheid NM, Kamper SJ, Alanay A, Berven SH, Cheung KM, Ito M, Lenke LG, Polly DW, Qiu Y, van Tulder M, Shaffrey C (2014) Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J 23:2603–2618. doi:10.1007/s00586-014-3356-118.Schwab F, Lafage V, Farcy JP, Bridwell K, Glassman S, Ondra S, Lowe T, Shainline M (2007) Surgical rates and operative out-come analysis in thoracolumbar and lumbar major adult scoliosis: application of the new adult deformity classification. Spine (Phila Pa 1976) 32:2723–2730. doi:10.1097/BRS.0b013e31815a58f219.Bradford DS, Tay BK, Hu SS (1999) Adult scoliosis: surgical indications, operative management, complications, and outcomes. Spine (Phila Pa 1976) 24:2617–262920.Schwab F, Farcy JP, Bridwell K, Berven S, Glassman S, Harrast J, Horton W (2006) A clinical impact classification of scoliosis in the adult. Spine (Phila Pa 1976) 31:2109–2114. doi:10.1097/01. brs.0000231725.38943.ab21.Smith JS, Lafage V, Shaffrey CI, Schwab F, Lafage R, Hostin R, O’Brien M, Boachie-Adjei O, Akbarnia BA, Mundis GM, Errico123Eur Spine JT, Kim HJ, Protopsaltis TS, Hamilton DK, Scheer JK, Sciubba D, Ailon T, Fu KM, Kelly MP, Zebala L, Line B, Klineberg E, Gupta M, Deviren V, Hart R, Burton D, Bess S, Ames CP, International Spine Study G (2016) Outcomes of operative and nonoperative treatment for adult spinal deformity: a prospective, multicenter, propensity-matched cohort assessment with mini-mum 2-year follow-up. Neurosurgery 78:851–861. doi:10.1227/ NEU.000000000000111622.Theis J, Gerdhem P, Abbott A (2015) Quality of life outcomes in surgically treated adult scoliosis patients: a systematic review. Eur Spine J 24:1343–1355. doi:10.1007/s00586-014-3593-323.Pekmezci M, Berven SH, Hu SS, Deviren V (2009) The factors that play a role in the decision-making process of adult deformity patients. Spine (Phila Pa 1976) 34:813–817. doi:10.1097/BRS. 0b013e3181851ba624.Koller H, Pfanz C, Meier O, Hitzl W, Mayer M, Bullmann V, Schulte TL (2016) Factors influencing radiographic and clinical outcomes in adult scoliosis surgery: a study of 448 European patients. Eur Spine J 25:532–548. doi:10.1007/s00586-015-3898-x25.Smith JS, Klineberg E, Schwab F, Shaffrey CI, Moal B, Ames CP, Hostin R, Fu KM, Burton D, Akbarnia B, Gupta M, Hart R, Bess S, Lafage V, International Spine Study G (2013) Change in classification grade by the SRS-Schwab Adult Spinal Deformity Classification predicts impact on health-related quality of life measures: prospective analysis of operative and nonoperative treatment. Spine (Phila Pa 1976) 38:1663–1671. doi:10.1097/ BRS.0b013e31829ec56326.Andersen T, Christensen FB, Laursen M, Hoy K, Hansen ES, Bunger C (2001) Smoking as a predictor of negative outcome in lumbar spinal fusion. Spine (Phila Pa 1976) 26:2623–262827.Schairer WW, Carrer A, Deviren V, Hu SS, Takemoto S, Mummaneni P, Chou D, Ames C, Burch S, Tay B, Sawyer A, Berven SH (2013) Hospital readmission after spine fusion for adult spinal deformity. Spine (Phila Pa 1976) 38:1681–1689. doi:10.1097/BRS.0b013e31829c08c928.Worley N, Marascalchi B, Jalai CM, Yang S, Diebo B, Vira S, Boniello A, Lafage V, Passias PG (2016) Predictors of inpatient morbidity and mortality in adult spinal deformity surgery. Eur Spine J 25:819–827. doi:10.1007/s00586-015-4104-x29.Hu SS, Berven SH (2006) Preparing the adult deformity patient for spinal surgery. Spine (Phila Pa 1976) 31:S126–S131. doi:10. 1097/01.brs.0000234760.69549.7930.Glassman SD, Anagnost SC, Parker A, Burke D, Johnson JR, Dimar JR (2000) The effect of cigarette smoking and smoking cessation on spinal fusion. Spine (Phila Pa 1976) 25:2608–261531.Malfair D, Flemming AK, Dvorak MF, Munk PL, Vertinsky AT, Heran MK, Graeb DA (2010) Radiographic evaluation of scol-iosis: review. AJR Am J Roentgenol 194:S8–S22. doi:10.2214/ AJR.07.714532.Bess S, Schwab F, Lafage V, Shaffrey CI, Ames CP (2013) Classifications for adult spinal deformity and use of the Scoliosis Research Society-Schwab Adult Spinal Deformity Classification. Neurosurg Clin N Am 24:185–193. doi:10.1016/j.nec.2012.12. 00833.Frazier DD, Lipson SJ, Fossel AH, Katz JN (1997) Associations between spinal deformity and outcomes after decompression for spinal stenosis. Spine (Phila Pa 1976) 22:2025–202934.Houten JK, Nasser R (2013) Symptomatic progression of degenerative scoliosis after decompression and limited fusion surgery for lumbar spinal stenosis. J Clin Neurosci 20:613–615. doi:10.1016/j.jocn.2012.06.00235.Kuhns CA, Bridwell KH, Lenke LG, Amor C, Lehman RA, Buchowski JM, Edwards C II, Christine B (2007) Thoracolumbar deformity arthrodesis stopping at L5: fate of the L5–S1 disc, minimum 5-year follow-up. Spine (Phila Pa 1976) 32:2771–2776. doi:10.1097/BRS.0b013e31815a7ece36.Edwards CC 2nd, Bridwell KH, Patel A, Rinella AS, Berra A, Lenke LG (2004) Long adult deformity fusions to L5 and the sacrum. A matched cohort analysis. Spine (Phila Pa 1976) 29:1996–200537.Swamy G, Berven SH, Bradford DS (2007) The selection of L5 versus S1 in long fusions for adult idiopathic scoliosis. Neurosurg Clin N Am 18:281–288. doi:10.1016/j.nec.2007.01.01038.Jain A, Hassanzadeh H, Strike SA, Menga EN, Sponseller PD, Kebaish KM (2015) Pelvic fixation in adult and pediatric spine surgery: historical perspective, indications, and techniques: AAOS exhibit selection. J Bone Jt Surg Am 97:1521–1528. doi:10.2106/JBJS.O.0057639.Saer EH 3rd, Winter RB, Lonstein JE (1990) Long scoliosis fusion to the sacrum in adults with nonparalytic scoliosis. An improved method. Spine (Phila Pa 1976) 15:650–65340.Shen FH, Mason JR, Shimer AL, Arlet VM (2013) Pelvic fixation for adult scoliosis. Eur Spine J 22(Suppl 2):S265–S275. doi:10. 1007/s00586-012-2525-341.Tsuchiya K, Bridwell KH, Kuklo TR, Lenke LG, Baldus C (2006) Minimum 5-year analysis of L5–S1 fusion using sacro-pelvic fixation (bilateral S1 and iliac screws) for spinal deformity. Spine (Phila Pa 1976) 31:303–308. doi:10.1097/01.brs. 0000197193.81296.f142.Annis P, Lawrence BD, Spiker WR, Zhang Y, Chen W, Daubs MD, Brodke DS (2014) Predictive factors for acute proximal junctional failure after adult deformity surgery with upper instrumented vertebrae in the thoracolumbar spine. Evid Based Spine Care J 5:160–162. doi:10.1055/s-0034-138675543.Barbanti Brodano G, Terzi S, Gasbarrini A, Bandiera S, Simoes C, Boriani S (2013) Do benefits overcome the risks related to surgery for adult scoliosis? A detailed analysis of a consecutive case series. Eur Spine J 22(Suppl 6):S795–S802. doi:10.1007/ s00586-013-3031-y44.Rahman RK, Buchowski JM, Stephens B, Dorward IG, Koester LA, Bridwell KH (2013) Comparison of TLIF with rhBMP-2 versus no TLIF and higher posterolateral rhBMP-2 dose at L5–S1 for long fusions to the sacrum with sacropelvic fixation in patients with primary adult deformity. Spine (Phila Pa 1976) 38:2264–2271. doi:10.1097/BRS.000000000000004545.Ha Y, Maruo K, Racine L, Schairer WW, Hu SS, Deviren V, Burch S, Tay B, Chou D, Mummaneni PV, Ames CP, Berven SH (2013) Proximal junctional kyphosis and clinical outcomes in adult spinal deformity surgery with fusion from the thoracic spine to the sacrum: a comparison of proximal and distal upper instrumented vertebrae. J Neurosurg Spine 19:360–369. doi:10. 3171/2013.5.SPINE1273746.Maruo K, Ha Y, Inoue S, Samuel S, Okada E, Hu SS, Deviren V, Burch S, William S, Ames CP, Mummaneni PV, Chou D, Berven SH (2013) Predictive factors for proximal junctional kyphosis in long fusions to the sacrum in adult spinal deformity. Spine (Phila Pa 1976) 38:E1469–E1476. doi:10.1097/BRS.0b013e3182a 51d4347.O’Shaughnessy BA, Bridwell KH, Lenke LG, Cho W, Baldus C, Chang MS, Auerbach JD, Crawford CH (2012) Does a long-fusion ‘‘T3-sacrum’’ portend a worse outcome than a short-fusion ‘‘T10-sacrum’’ in primary surgery for adult scoliosis? Spine (Phila Pa 1976) 37:884–890. doi:10.1097/BRS.0b013e3182376 41448.Fujimori T, Inoue S, Le H, Schairer WW, Berven SH, Tay BK, Deviren V, Burch S, Iwasaki M, Hu SS (2014) Long fusion from sacrum to thoracic spine for adult spinal deformity with sagittal imbalance: upper versus lower thoracic spine as site of upper instrumented vertebra. Neurosurg Focus 36:E9. doi:10.3171/ 2014.3.FOCUS1354149.Dorward IG, Lenke LG, Stoker GE, Cho W, Koester LA, Sides BA (2014) Radiographic and clinical outcomes of posterior123Eur Spine Jcolumn osteotomies in spinal deformity correction. Spine (Phila Pa 1976). doi:10.1097/BRS.000000000000030250.La Maida GA, Luceri F, Gallozzi F, Ferraro M, Bernardo M(2015) Complication rate in adult deformity surgical treatment: safety of the posterior osteotomies. Eur Spine J 24(Suppl 7):879–886. doi:10.1007/s00586-015-4275-551.Lenke LG, Fehlings MG, Shaffrey CI, Cheung KM, Carreon L, Dekutoski MB, Schwab FJ, Boachie-Adjei O, Kebaish KM, Ames CP, Qiu Y, Matsuyama Y, Dahl BT, Mehdian H, Pellise-Urquiza F, Lewis SJ, Berven SH (2016) Neurologic outcomes of complex adult spinal deformity surgery: results of the prospec-tive, multicenter Scoli-RISK-1 study. Spine (Phila Pa 1976) 41:204–212. doi:10.1097/BRS.000000000000133852.Smith JS, Klineberg E, Lafage V, Shaffrey CI, Schwab F, Lafage R, Hostin R, Mundis GM Jr, Errico TJ, Kim HJ, Protopsaltis TS, Hamilton DK, Scheer JK, Soroceanu A, Kelly MP, Line B, Gupta M, Deviren V, Hart R, Burton DC, Bess S, Ames CP, Interna-tional Spine Study G (2016) Prospective multicenter assessment of perioperative and minimum 2-year postoperative complication rates associated with adult spinal deformity surgery. J Neurosurg Spine 25:1–14. doi:10.3171/2015.11.SPINE15103653.Dearborn JT, Hu SS, Tribus CB, Bradford DS (1999) Throm-boembolic complications after major thoracolumbar spine sur-gery. Spine (Phila Pa 1976) 24:1471–147654.Rojas-Tomba F, Gormaz-Talavera I, Menendez-Quintanilla IE, Moriel-Duran J, Garcia de Quevedo-Puerta D, Villanueva-Pareja F (2016) Incidence and risk factors of venous thromboembolism in major spinal surgery with no chemical or mechanical pro-phylaxis. Rev Esp Cir Ortop Traumatol 60:133–140. doi:10.1016/ j.recot.2015.10.00255.Fabricant PD, Admoni S, Green DW, Ipp LS, Widmann RF (2012) Return to athletic activity after posterior spinal fusion for adoles-cent idiopathic scoliosis: analysis of independent predictors. J Pe-diatr Orthop 32:259–265. doi:10.1097/BPO.0b013e31824b285f56.Tarrant RC, O’Loughlin PF, Lynch S, Queally JM, Sheeran P, Moore DP, Kiely PJ (2014) Timing and predictors of return to short-term functional activity in adolescent idiopathic scoliosis after posterior spinal fusion: a prospective study. Spine (Phila Pa 1976) 39:1471–1478. doi:10.1097/BRS.000000000000045257.Green BN, Johnson C, Moreau W (2009) Is physical activity contraindicated for individuals with scoliosis? A systematic lit-erature review. J Chiropr Med 8:25–37. doi:10.1016/j.jcm.2008. 11.00158.Acaroglu E, Yavuz AC, Guler UO, Yuksel S, Yavuz Y, Dom-ingo-Sabat M, Pellise F, Alanay A, Perez Grueso FS, Kleinstu¨ck F, Obeid I (2016) A decision analysis to identify the ideal treatment for adult spinal deformity: is surgery better than non-surgical treatment in improving health-related quality of life and decreasing the disease burden? European Spine Study Group. Eur Spine J 25(8):2390–240059.Acaroglu E, Guler UO, Cetinyurek-Yavuz A, Yuksel S, Yavuz Y, Ayhan S, Domingo-Sabat M, Pellise F, Alanay A, Perez Grueso FS, Kleinstu¨ck F, Obeid I, European Spine Study Group (2017) Decision analysis to identify the ideal treatment for adult spinal deformity: What is the impact of complications on treatment outcomes? Acta Orthop Traumatol Turc 51(3):181–190
“张大哥(可能初次见面,还没好意思说张大叔),太佩服你了,这么大年龄还来美国学习。”这是小我十二岁的江苏医生在见我第一面的时候对我说的话,说的我一愣,这次来美国之前,我没有想过年龄和学习的关系,是啊,人过四十不学艺,奔五的人了,该在家吃老本了,怎么还到美国学习?为了前途、金钱、地位、名誉?有吗?我想想,2012.07-2013.06,我初次到美国,追随美国脊柱外科大师、基础研究先驱,学习1年,回国以后,以上东西我好像都没得到,只是觉得自己体悟到了真正的西医,学到了当时脊柱外科最好的理论和实践,并学以致用,惠及患者,最终的收获是,得到患者肯定,自己内心满足,仅此而已。5年后,再到美国,为什么?要想明白,就需要了解医生这个职业。 众所周知,在美国,医生是最受尊重、收入可观的职业,为什么?当然,救死扶伤,职业高尚,性质所赐,是天生的,可你知道,都是什么人在从事这个职业?谋生的手段嘛,什么人都能干啊,中专生、大专生、本科生、硕士生、博士生,读书识字的都可以啊,这肯定不是美国,在美国,只有人上人才能当医生,只有学霸中的学霸才能当医生,美国的医生选拨和培养制度和中国不同,在美国,想当医生,从小就要确定目标,高中期间,就要多学一些与医学相关的基础课,成绩保持年级上25%,争取先上个好大学,美国大学本科没有医学,先上四年任何其它专业本科,如果想学医,一般选生物、物理、化学、数学等专业,还是要保持年级上25%的平均成绩,完成申请医学院需要的课程,同时要争取研究经历、志愿者经历、社团活动等,有时还需要完成医学预科课程,总之,一天可能只能睡6个小时,其余时间除了吃饭,其它时间都用在争取医学生位置上,毕竟美国医学院每年招生人数很少,总共2万多人,本科毕业前1年,开始参加医学生入学考试,8个小时的考试,涉及多门课程,你有过8小时考试的经历吗?终于被医学院录取了,又是4年的医学教育,期间要完成第一和第二阶段执业医师考试,不管你多努力,后10%要淘汰,毕业了,拿到博士学位了,还不能当医生,还要申请到医院去做住院医生,这又是一道坎,住院医名额有限,你可能多年申请不上,3-5年的住院医期间,不死也要褪层皮,住院医,顾名思义就是住到医院里,24小时待命,天天干不完的工作,还要完成第三阶段考试,住院医完成了,可以当医生了,在骨科你只能干胳膊腿骨折手术,要想当脊柱外科医生,除了住院医期间表现优秀,5年期间完成1500台以上手术,还需要1-2年培训,合格了就可以独立执业了,脊柱外科专科医师。这样下来,5年小学、3年初中、4年高中、4年本科、4年博士、5年住院医、1年专科医师培训,26年的奋斗,你能坚持吗?这你就明白了,在美国,医生是最聪明的、最努力的一群人,美国的脊柱外科医师,几乎个个能力超群,不仅精于手术,而且实践和理论结合,不断创新,引领全世界医学发展,用自己的实力赢得尊重,赢得地位和收入,因此,学西医要到美国,这儿有最好的大夫,有最先进的理论和技术。 中国医生呢?以前,在中国,当医生相对简单,大家都很明白,有自学成才的,有没有正规学历的,有博士毕业的,水平参差不齐,近年来,国家在向美国学习,在完善医生培养制度,当医生相对困难多了。大医院的医生压力也是相当大,使命感更强烈,人才聚集,竞争激烈。就说我自己吧,大学5年期间就没放松过学习,毕业后先住院医师规范化培训5年,选择脊柱外科,然后上研究生3年(半年上课,其余时间住院医师),再工作3年,期间到北医三院专项学习,再3年博士,紧接着美国临床学习1年,获脊柱微创、脊柱专业博士后培训项目证书,受邀成为北美脊柱学会委员,回国工作5年,再次赴美国,追随北美脊柱学会主席,美国大师级脊柱外科医师学习半年。为什么这么拼命学习?脊柱外科发展非常快,几乎天天都会有新理论、新技术出现,为了跟上,为了更好为病人服务,就需要不停学习,不停改变,用最新的理论、技术武装自己,用最新的理论、技术为病人服务。这样才能对得起自己的使命-医生这个职业。
医生手记-腰背痛文献统计,高达70%-85%的人都有过腰背痛的经历,其中90%的腰背痛为非特异性,即无明确原因的腰背痛。非特异性腰背痛多为自限性,在不治疗的前提下,这类腰背痛57%的在1周内自然恢复,90%在6周内恢复,95%在12周内恢复,只有1.3%在1年后仍有功能障碍。因此,对于非特异性腰背痛,在诊断明确后,只要在专业医师指导下保护胸、腰椎、适当锻炼,绝大多数可以短期(12周以内)痊愈,而不至于发展为慢性腰背痛(持续12周以上)。腰间盘突出、创伤、感染性疾病、肿瘤、泌尿疾病等引起的特异性腰痛,对人的身体健康、生活质量影响大,不及时治疗可能导致严重的后果,甚至死亡,必须及时到医院由专业医师诊治,避免引起严重的后果。不同特征的腰背痛,背后隐匿的疾病也不同,掌握不同疾病导致的腰背痛的特点,及时就医,可以避免延误病情。以下向你介绍各类腰背痛的特点:非特异性腰背痛:高发年龄30-50岁,好发人群:矿工、司机等,而坐位工作和职业不是腰背痛的危险因素。病因不明确,诱发因素:搬、提重物、扭转腰部、打喷嚏、弯腰取物等;急性非特异性腰背痛特点:发病急,疼痛程度多较为剧烈;腰椎活动可引发、加重腰背痛。慢性非特异性腰背痛特点:临床表现多样,可同时存在腰部无力、僵硬感、活动受限或协调性下降,疼痛症状多于卧床休息后减轻或消失,弯腰、久坐、久站后加重。经热敷、按摩等保守治疗后疼痛症状多可暂时缓解。腰肌劳损导致的腰痛:好发人群:长期反复的过度腰部运动及过度负荷者,如长时期坐位、久站或从弯腰位到直立位手持重物、抬物,使腰肌长期处于高张力状态,久而久之可导致慢性腰肌劳损症状;疼痛特点:腰部酸痛或胀痛,部分刺痛或灼痛。晨起重,活动后减轻,活动过度又加重,不能坚持弯腰工作,常被迫时时伸腰或以拳头击腰部以缓解疼痛,腰部有压痛点。腰部外形及活动多无异常,少数患者腰部活动稍受限。骨质疏松导致的腰痛:好发人群:70岁以上男性,60岁以上女性,瘦弱者,有糖尿病、血液系统疾病、甲状腺疾病、类风湿性关节炎、肾功能不全、使用强的松等糖皮质激素类药物3个月以上者;骨质疏松疼痛一般特点:全身酸痛、无力,甚至起床困难;骨质疏松脊柱骨折特点:抬、搬、提重物或较轻物体、摔倒、转身、咳嗽、打喷嚏、弯腰时,甚至没有上述任何原因时,出现腰背疼痛,部分病人疼痛剧烈,卧床,不能活动;有些病人可下地行走,只是在翻身、起卧床、弯腰时腰背痛;有些病人疼痛一段时间后,疼痛消失,过一段时间再次出现,有些病人表现为胸痛、腹痛,有时误诊为阑尾炎、胃病。腰椎间盘突出导致的腰痛:高发于30-60岁,特点是:不能耐受久坐,久坐后腰部酸胀、疼痛,有时会扩散到臀部、大腿,影响到坐骨神经时,疼痛、麻木可放射到小腿、脚部,站起活动后好转,久站腰痛又加重,卧床休息腰痛明显减轻。骨癌导致的腰痛:有恶性肿瘤病史者需警惕恶性肿瘤转移到大梁骨导致的腰背痛,这种骨癌疼痛的特点是持续性钝痛、阵发性加重,特别是夜间疼痛明显。感染导致的腰背痛:特点是持续性疼痛,多合并有体温高、无力,腰背活动受限;另外,泌尿系统疾病和消化系统疾病等内脏疾病,如泌尿系结石、肾脏肿瘤、胆囊炎、肝脏肿瘤、妇科炎症等,除原发病的特点外,也会导致腰痛,需正确区别对待。
文献统计,高达70%-85%的人都有过腰背痛的经历,其中90%的腰背痛为非特异性,即无明确原因的腰背痛。非特异性腰背痛多为自限性,在不治疗的前提下,这类腰背痛57%的在1周内自然恢复,90%在6周内恢复,95%在12周内恢复,只有1.3%在1年后仍有功能障碍。因此,对于非特异性腰背痛,在诊断明确后,只要在专业医师指导下保护胸、腰椎,适当锻炼,绝大多数可以短期(12周以内)痊愈,而不至于发展为慢性腰背痛(持续12周以上)。腰间盘突出、创伤、感染性疾病、肿瘤、泌尿疾病等引起的特异性腰痛,对人的身体健康、生活质量影响大,不及时治疗可能导致严重的后果,甚至死亡,必须及时到医院由专业医师诊治,避免引起严重的后果。不同特征的腰背痛,背后隐匿的疾病也不同,掌握不同疾病导致的腰背痛的特点,及时就医,可以避免延误病情。日常生活工作中如何保护腰椎?又如何科学的锻炼腹肌、腰背肌?腰椎的保护最简单道理就是注意生活、工作中养成良好的习惯,减轻腰椎的压力,避免过度劳损,如坐位时,最后坐有靠背的椅子,上身轻度后倾,垫起腰部,椅子高度合适(坐下时膝关节略高于髋关节),不要久坐,间断站起活动腰部,如伸个懒腰;行走时,挺胸收腹、直腰;卧床时,床垫软硬合适;避免弯腰搬重物,避免长时间保持弓腰姿势等。腹肌、腰背肌的科学锻炼是缓解腰背痛的可靠方法,简单有效,锻炼的方法很多,但科学、合理很重要,还要因人而宜,不要道听途说,想当然,不恰当的锻炼会加重病情,2016年在北美脊柱学会年会上,北美脊柱学会推出了一套方法,我认为是科学、简单、易行、有效的,你也试试?下边是这些动作的图示(引自熊怀风,丁香园)。注意:锻炼时,要等腰腿痛急性期后,在医师指导下,动作循序渐进,每日2次,坚持2月以上。第一组动作:深蹲(Squats)图 1 深蹲第二组动作:超人式 / 燕子飞(Skydiver to Superman to Swimmer)图2 超人式 / 燕子飞第三组动作:四点爬姿(Quadruped Exercises)图 3 四点爬姿第四组动作:腰神经锻炼(Lumbar Nerve Flossing)图 4 腰神经锻炼第五组动作:平躺拉伸(Extension in Lying)图 5 平躺拉伸
原创:医林百晓生7月4日原创好文章1、著名专家的门诊一般都集中在星期的前半段,后半段逐渐减少,到了周末就更少,在病房里找到他们的几率也差不多是这样。因为大专家都很忙,不是在这儿忙,就是在那儿忙。2、医生的服务态度(主要是耐心程度)与业务能力并不完全成正比,一般来说老专家态度最好,年轻人次之,中高年资的专家最差。从这个角度看,找个“德艺双馨”的医生真的很难。3、医生看病时也会“看人下菜碟”,衣着整齐、谈吐举止有度的人会得到更多的关照。男医生对女病人会更关照一些,反之亦然。4、名气最大的医生多半都不是业务能力最强的医生,即便与他们自身相比,名气最大的时候也已经不是业务的巅峰时期。不过这个规律好像在各个领域都适用。5、要想评价外科医生的真实手术水平,最有发言权的是麻醉科医生和手术室的护士。因为他们天天见,又没有什么利益上的瓜葛。所以,如果你想了解医生的真实口碑,要尽量避免让相同专业的人进行评价,同科室的就更不靠谱了。6、医生跟你谈话的主要目的是输出信息,比如交代病情、告知风险、介绍治疗方案等等,不是跟你讨论医理。如有疑问可以直接提出并请求解释,但不要拿着百度或者偏方之类的东西跟医生讨论,这样做除了会让人笑话之外,不会有什么结果。7、住院时一定要跟具体负责你的医生和护士搞好关系。他们不仅是照顾你的主体,其实也是你治疗的主体。举个例子:你的手术“大”医生即便会上,也多半是做其中的一部分,切口缝得好不好看更跟他们没啥关系。8、不要试图用送红包这种方式在治疗中换取某种特权,比如多留家属陪伴、不请假外出等等。这个不仅很难实现,还招人烦,到头来容易起反作用。9、如果你经济条件很好,面对同一种药时尽量选进口的,效果会好很多。如果你的经济状况一般,尽量不要选那些号称能够提高免疫力、抗肿瘤之类的中成药,真的没啥用;如果你的经济状况比较差,建议在大医院确诊或拿到治疗方案后回当地去治,这是最经济实惠的做法。10、医生们不爱给自己用药,必须用药的时候也是尽量少用,这一点非常值得我们学习。与其自己去药店花钱买药换个心安,不如干脆去庙里磕头,又环保又健康。11、因为管理体制带来的有些恶果,跟医生的基本素质没有关系。不要把医生的素质和医疗体制的恶果相联系---你是来看病的,不是来拯救中国医疗界的。12、一般来说,医生说话都是比较简练的,如果有一天医生突然和蔼耐心地想跟你聊聊病情,那要小心,你可能摊上事儿了;如果医生一天看你好几遍,又老是跟你家人嘀嘀咕咕的,那更要小心---你可能摊上大事儿了。13、如果你觉得受到了不公正的待遇,尽可以向你的主管医生和护士提出来。只要有理有据,他们不仅会虚心接受,有时候说不定还会感谢你。比如在门诊时常有“熟人”加塞儿看病,这种事不光排队的人烦,医生们其实也烦。14、医生们一般都很忙,早、晚查房时是跟他们交流的最稳定有效的时间。记住说话一定要简练,有什么疑问或者要求尽可直接提出来让他们解决。看病不是谈恋爱,干脆利索地解决问题是大家都喜欢的,不需要那么曲折缱绻。15、国内的医疗机构有很多种,其中有不少是山寨医院。一般来说他们骗人最有效的幌子有两种:一种是中医养生美容美体,另一种是专治疑难杂症。鉴别方法很简单:真正好的医疗项目一般都是大医院率先开展,并且其原理和疗效都明晰有据。只有山寨医院才会打着“一招鲜”的幌子招揽客户,并且这“一招”除了号称疗效神奇之外,其它的一概说不清楚。注意:求医问药是有风险的,千万不要相信“高手在民间”这样的鬼话。16、有很多大人物都提倡过中西医结合,但由于其基本理论和诊治方式的巨大差异,使得这种结合非常难实现。现实中结合得最好是那些小广告满天飞的山寨中成药。比如说降血糖的、降血压的、壮阳的、助睡眠的等等,只要是一用就能快速起效的,基本上都添加有西药成分,一查一个准儿。17、虽然有很多人对医疗现状不满意,但绝大多数“正版”的医生都是非常讲良心的。不管外界对他们怎么评、怎么传、怎么骂,“医者父母心”一直都是医疗圈里最大的潜规则,这一点从来没变过。18、了解医护人员的方式有很多,影视剧和官方媒体是最不靠谱的两个。那里面的人物形象不是好上天就是烂成渣儿,基本上都刻画得不象凡间里的人。其实最简单有效的办法就是跟他们交个朋友,很实惠,也很有趣。